All of the antenna parameters are expressed in terms of a transmission antenna, but are identically applicable to a receiving antenna, due to reciproicity. Impedance, however, is not applied in an obvious way; for impedance, the impedance at the load (where the power is consumed) is most critical. For a transmitting antenna, this is the antenna itself. For a receiving antenna, this is at the (radio) receiver rather than at the antenna. Tuning is done by adjusting the length of an electrically long linear antenna to alter the electrical resonance of the antenna.
Antenna tuning is done by adjusting an inductance or capacitance combined with the active antenna (but distinct and separate from the active antenna). The inductance or capacitance provides the reactance which combines with the inherent reactance of the active antenna to establish a resonance in a circuit including the active antenna. The established resonance being at a frequency other than the natural electrical resonant frequency of the active antenna. Adjustment of the inductance or capacitance changes this resonance.
Antennas used for transmission have a maximum power rating, beyond which heating, arcing or sparking may occur in the components, which may cause them to be damaged or destroyed. Raising this maximum power rating usually requires larger and heavier components, which may require larger and heavier supporting structures. This is a concern only for transmitting antennas, as the power received by an antenna rarely exceeds the microwatt range.
Antennas designed specifically for reception might be optimized for noise rejection capabilities. An "antenna sheild" is a conductive or low reluctance structure (such as a wire, plate or grid) which is adapted to be placed in the vicinity of an antenna to reduce, as by dissipation through a resistance or by conduction to ground, undesired electromagnetic radiation, or electric or magnetic fields, which are directed toward the active antenna from an external source or which emanate from the active antenna. Other methods to optimize for noise rejection can be done by selecting a narrow-bandwidth so that noise from other frequencies is rejected, or selecting a specific radiation pattern to reject noise from a specific direction, or by selecting a polarization different from the noise polarization, or by selecting an antenna that favors either the electric or magnetic field.
For instance, an antenna to be used for reception of low frequencies (below about ten MHz ) will be subject to both man-made noise from motors and other machinery, and from natural sources such as lightning. Successfully rejecting these forms of noise is an important antenna feature. A small coil of wire with many turns is more able to reject such noise than a vertical antenna. However, the vertical will radiate much more effectively on transmit, where extraneous signals are not a concern.

Although any circuit can radiate if driven with a signal of high enough frequency, most practical antennas are specially designed to radiate efficiently at a particular frequency. An example of an inefficient antenna is the simple Hertzian dipole antenna, which radiates over wide range of frequencies and is useful for its small size. A more efficient variation of this is the half-wave dipole, which radiates with high efficiency when the signal wavelength is twice the electric length of the antenna.
One of the goals of antenna design is to minimize the reactance of the device so that it appears as a resistive load. An "antenna inherent reactance" includes not only the distributed reactance of the active antenna but also the natural reactance due to its location and surroundings (as for example, the capacity relation inherent in the position of the active antenna relative to ground). Reactance diverts energy into the reactive field, which causes unwanted currents that heat the antenna and associated wiring, thereby wasting energy without contributing to the radiated output. Reactance can be eliminated by operating the antenna at its resonat frequency, when its capacitive and inductive reactances are equal and opposite, resulting in a net zero reactive current. If this is not possible, compensating inductors or capacitors can instead be added to the antenna to cancel its reactance as far as the source is concerned.
Once the reactance has been eliminated, what remains is a pure resistance, which is the sum of two parts: the ohmic resistance of the conductors, and the radiation resistance. Power absorbed by the ohmic resistance becomes waste heat, and that absorbed by the radiation resistance becomes radiated electromagnetic energy. The greater the ratio of radiation resistance to ohmic resistance, the more efficient the antenna.

There are many types of antennas below mentioned are few basic :-
The isotropic radiator is a purely theoretical antenna that radiates equally in all directions. It is considered to be a point in space with no dimensions and no mass. This antenna cannot physically exist, but is useful as a theoretical model for comparison with all other antennas. Most antennas' gains are measured with reference to an isotropic radiator, and are rated in dBi (decibels with respect to an isotropic radiator).
The dipole antenna is simply two wires pointed in opposite directions arranged either horizontally or vertically, with one end of each wire connected to the radio and the other end hanging free in space. Since this is the simplest practical antenna, it is also used as reference model for other antennas; gain with respect to a dipole is labeled as dBd. Generally, the dipole is considered to be omin-directional in the plane perpendicular to the axis of the antenna, but it has deep nulls in the directions of the axis. Variations of the dipole include the folded dipole, the half wave antenna, the ground plane antenna, the whip, and the j-pole.
The Yagi-uda antenna is a directional variation of the dipole with parasitic elements added with functionality similar to adding a reflector and lenses (directors) to focus a filament light bulb.
The random-wire antenna is simply a very long (greater than one wavelength) wire with one end connected to the radio and the other in free space, arranged in any way most convenient for the space available. Folding will reduce effectiveness and make theoretical analysis extremely difficult. (The added length helps more than the folding typically hurts.) Typically, a random wire antenna will also require an antenna tuner, as it might have a random impedance that varies nonlinearly with frequency.
The horn is used where high gain is needed, the wavelength is short (microwave) and space is not an issue. Horns can be narrow band or wide band, depending on their shape. A horn can be built for any frequency, but horns for lower frequencies are typically impractical

A dipole has a uniform or omni-directional radiation patern in one plane and a figure eight pattern in other two planes .This type of antenna can only over cum envoirnmrntal challenges by boosting the power level of signal.Challenges could be mountains, valleys ,buildings,etc.
An antenna is a transducer designed to transmit or recive elecrto-magnetic waves. In other words, antennas convert electromagnetic waves into electrical currents and vice versa. Antennas are used in systems such as radio and T.V broadcasting, point-to-point radio communication,WLAN, radars, and space stations. Antennas usually work in air or outer space, but can also be operated under water or even through soil and rock at certain frequencies for short distances.
Physically, an antenna is an arrangement of conductors that generate a radiating electrnic magnetic feild in response to an applied alternating voltage and the associated alternating electric current, or can be placed in an electromagnetic field so that the field will induce an alternating current in the antenna and a voltage between its terminals. Some antenna devices (parabolic antenna,horn antenna) just adapt the free space to another type of antenna.
Thomas A Edison used antennas by 1885. Edison patented his system in US pateint466,972 . Antennas were also used in 1888 by Heinrich Hertz (1857-1894) to prove the existence of elecromagnetic waves predicted by the theory of James Maxwell. Hertz placed the emitter dipole in the focal point of a parabolic reflector. He published his work and installation drawings in Annalen der physik and Cheime (vol. 36, 1889).